

Simulated crouch gait by healthy children can help to understand what is behind the crouch gait pattern in CP Children

Catarina Cardadeiro¹, Filipa Joao², Rodrigo Mateus³, António Veloso^{4*}

¹Universidade Nova de Lisboa Faculdade de Ciencias e Tecnologia, Caparica, Portugal, ²Universidade de Lisboa Faculdade de Motricidade Humana, Algés, Portugal, ³Universidade de Lisboa Faculdade de Motricidade Humana, Algés, Portugal, ⁴Universidade de Lisboa Faculdade de Motricidade Humana, Algés, Portugal

Submitted to Journal:

Frontiers in Bioengineering and Biotechnology

Specialty Section:

Biomechanics

Article type:

Original Research Article

Manuscript ID:

1754954

Received on:

26 Nov 2025

Journal website link:

www.frontiersin.org

Scope Statement

This study aligns with the scope of this special issue in this journal because it leverages motion-tracking–based musculoskeletal simulations to analyze gait deviations in children with cerebral palsy. By comparing real and simulated crouch gait, the work provides biomechanical insights that can directly inform neurorehabilitation strategies and improve clinical decision-making supported by motion-tracking technologies.

Conflict of interest statement

The authors declare a potential conflict of interest and state it below

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision

Credit Author Statement

António Veloso: Conceptualization, Formal Analysis, Funding acquisition, Project administration, Resources, Supervision, Validation, Writing – original draft, Writing – review & editing. **Catarina Cardadeiro:** Investigation, Methodology, Software, Writing – original draft, Writing – review & editing. **Filipa Joao:** Conceptualization, Formal Analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. **Rodrigo Mateus:** Data curation, Formal Analysis, Methodology, Software, Writing – original draft.

Keywords

Cerebral Palsy, crouch gait, inducedacceleration analysis, musculoskeletal modelling, simulation

Abstract

Word count: 272

Neurologic dysfunctions, like cerebral palsy (CP), lead to serious disorders of movement, being walking really affected. Nowadays, the causes associated to crouch gait (CG) are not clearly identified, so being able to differentiate the several gait deviations associated to crouch, may provide guidance for more precise clinical decision-making. Comparing healthy children simulating this pathological gait with CP children with real crouch gait may provide new insight into what is behind the crouch gait pattern. The purpose of this study was to investigate and compare the muscle forces required to walk in simulated crouch and real crouch gait, and to determine how the individual muscle contributions to vertical and fore-aft acceleration of the mass center differ between simulated crouch, real couch, and unimpaired gait, considering just the single support phase of the stance. There were considered three study groups: three children with cerebral palsy walking in severe crouch gait, six typically developing children (TDC) simulating crouch gait, and the same healthy children performing unimpaired gait. The parameters were estimated through musculoskeletal simulations performed in OpenSim software. The results indicate that simulated and real crouch gait show a similar muscle behavior throughout single support in stance phase, relying mostly on the same muscle groups. This suggests that the most significant differences between this pathological gait and normal walking are more likely to be related to the crouch posture adopted than to muscular dysfunctions. The individual muscle contributions to vertical and fore-aft acceleration of the mass center showed that the major contributors to support are the same in all the research groups, being the vasti, soleus and gastrocnemius very important in supporting the crouch posture.

Funding information

Project supported by Fundação para a Ciência e a Tecnologia (FCT), grant number PTDC/EMD-EMD/5804/2020 and grant number UIDB/00447/2020, attributed to CIPER-Centro Interdisciplinar para o Estudo da Performance Humana (unit 447; DOI: 10.54499/UIDB/00447/2020).

Funding statement

The author(s) declare that financial support was received for the research and/or publication of this article.

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: The studies involving humans were approved by Ethics Committee for Research of the Faculty of Human Kinetics. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants' legal guardians/next of kin.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable images or data are presented in this study.

Data availability statement

Generated Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Generative AI disclosure

No Generative AI was used in the preparation of this manuscript.

1 **Simulated crouch gait by healthy children can help to understand what
2 is behind the crouch gait pattern in CP Children**

3 **Catarina Cardadeiro¹, Filipa Joao², Rodrigo Mateus², António Veloso^{*2}**

4 ¹ Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal

5 ² CIPER-Neuromuscular Biomechanics, Faculty of Human Kinetics, University of Lisbon, Lisbon,
6 Portugal

7 *** Correspondence:**

8 Corresponding Author

9 apveloso@fmh.ulisboa.pt

10 **Keywords: Crouch gait, Cerebral Palsy, musculoskeletal modelling, simulation, induced
11 acceleration analysis**

12

13 **Abstract**

14 Neurologic dysfunctions, like cerebral palsy (CP), lead to serious disorders of movement, being
15 walking really affected. Nowadays, the causes associated to crouch gait (CG) are not clearly
16 identified, so being able to differentiate the several gait deviations associated to crouch, may provide
17 guidance for more precise clinical decision-making. Comparing healthy children simulating this
18 pathological gait with CP children with real crouch gait may provide new insight into what is behind
19 the crouch gait pattern. The purpose of this study was to investigate and compare the muscle forces
20 required to walk in simulated crouch and real crouch gait, and to determine how the individual
21 muscle contributions to vertical and fore-aft acceleration of the mass center differ between simulated
22 crouch, real couch, and unimpaired gait, considering just the single support phase of the stance. There
23 were considered three study groups: three children with cerebral palsy walking in severe crouch gait,
24 six typically developing children (TDC) simulating crouch gait, and the same healthy children
25 performing unimpaired gait. The parameters were estimated through musculoskeletal simulations
26 performed in OpenSim software. The results indicate that simulated and real crouch gait show a
27 similar muscle behavior throughout single support in stance phase, relying mostly on the same
28 muscle groups. This suggests that the most significant differences between this pathological gait and
29 normal walking are more likely to be related to the crouch posture adopted than to muscular
30 dysfunctions. The individual muscle contributions to vertical and fore-aft acceleration of the mass
31 center showed that the major contributors to support are the same in all the research groups, being the
32 vasti, soleus and gastrocnemius very important in supporting the crouch posture.

33

34 **1 Introduction**

35 Cerebral palsy is a permanent neurologic dysfunction caused by serious cerebral damages of the fetal
36 or neonatal brain, primarily leading to disorders of movement and posture. Although the brain
37 damages are not progressive, their expression can change over time [1]. This disorder largely affects

38 the motor control of gait. Consequently, it is a key aspect when it comes to diagnosis. Crouch gait is
39 the most common gait pattern identified in children with this disease, characterized by excessive knee
40 and hip flexion, and increased ankle dorsiflexion. This type of gait overloads the joints, and it
41 requires a much higher energy cost compared to unimpaired gait, so it is extremely inefficient and
42 unsustainable in the long run [2,3]. Furthermore, crouch gait refers to progressive gait deviations that
43 include primary musculoskeletal abnormalities, related directly to neurological disorders, but also
44 secondary deviations that are induced by compensatory effects of the abnormal gait performed.
45 Knowing the primary causes of the gait abnormalities can help clinicians to choose the appropriate
46 corrective treatment and, especially, to define which surgical intervention should be applied.

47 Motion capture is not enough to study motion with the precision needed in these cases, so
48 musculoskeletal modelling has been widely used as a complementary tool. Previous studies have
49 used this method to investigate muscle activity [4-6] and individual muscle contribution to mass
50 center acceleration [7,8] in crouch gait, by comparing the results obtained with known values for
51 unimpaired gait. Although this method helps in understanding what is behind this pathological gait,
52 comparing it with simulated crouch performed by healthy children may contribute to better
53 distinguish between primary and secondary deviations. Therefore, some studies have aimed to
54 investigate the capacity of neurological intact children to perform crouch gait in a reproducible
55 manner and to characterize the biomechanics of this type of gait, analyzing only the kinetics and
56 kinematics of the motion [9-11]. Inducing physical constraints in healthy subjects to simulate
57 abnormal walking patterns commonly seen in children with neurological disorders as cerebral palsy,
58 has been proven to be useful for a better understanding of the causes behind the pathological gait.
59 This is especially important for progressive gait deviations like crouch gait.

60 The goals set to this study were to investigate and compare the muscle forces required to walk in
61 simulated crouch and real crouch gait, and to determine how the individual muscle contributions to
62 vertical and fore-aft acceleration of the mass center differ between simulated crouch, real couch, and
63 unimpaired gait, considering just the single support phase of the stance. The analysis was done by
64 using musculoskeletal modeling, performed in the software OpenSim. This work can contribute to
65 improve the diagnosis of crouch gait in children with cerebral palsy and so helping with treatment
66 planning.

67

68 2 Materials and Methods

69 2.1 Participants

70 The participants were selected from a database of subjects who had previously undergone motion
71 analysis at the University of Lisbon, Faculty of Human Kinetics, as part of an ongoing project. Three
72 children with cerebral palsy were chosen (Table 1) and the selection criteria included: a diagnosis of
73 spastic diplegic CP and classified as presenting a severe crouch pattern. According to Steele's crouch
74 severity classification [6], a crouch pattern is considered severe from a knee flexion angle of 50°.
75 Regarding the typically developing children group, six subjects were chosen as most representative
76 as possible of the age and structure of the CP children selected (Table 1). These subjects performed
77 both simulated crouch gait and their normal walking pattern. They were clinically analyzed, and it
78 was concluded that they did not present any neurological dysfunction. The protocol was approved by
79 and executed in accordance with the Faculty of Human Kinetics Ethics Committee (CEFMH-
80 2/2019). An informed consent was previously signed by the parent or the legal guardian of the
81 participant, and the child assent was also obtained after explaining the entire protocol.

84 **2.2 Data collection**

85 Firstly, each child was submitted to a clinical exam done by a health professional. A sequence of
 86 measures was performed on each subject that aimed to evaluate bone and joint deformities, muscle
 87 length, selective motor control, and spasticity. The second part consisted of the motion analysis. The
 88 data was collected with Qualisys Track Manager software (Qualisys Inc., Gothenburg, Sweden),
 89 version 2.9, operating on an optoelectronic system of 14 Qualisys cameras (Qualisys Oqus 300,
 90 Qualisys AB, Gothenburg, Sweden) at a frequency rate of 100 Hz. Ground reaction forces were
 91 measured with three Bertec and one Kistler force plates. Each subject had 25 reflective markers and 4
 92 marker clusters placed on specific anatomic places, according to CAST (calibrated anatomical
 93 systems technique) protocol and CODA pelvis, used to reconstruct 8 body segments. The gait
 94 analysis started with the recording of a static trial barefoot in the standing position. Afterward, the
 95 child was instructed to walk along a 10m corridor, at a self-selected speed. The dynamic trials ended
 96 when the child successfully achieved a minimum of 10 good kinetic walking cycles for each side,
 97 considering the natural variability in kinematic and kinetic gait parameters.

99 **2.3 Data processing**

100 The data processing and inverse kinematics (Supplementary Fig. 1) was performed using Visual3D
 101 software. The variables were filtered using a 4th order Butterworth filter at 8Hz. The inverse
 102 kinematics problem was solved as a global optimization problem, which means that the pose of the
 103 model is computed to best match the data from the motion capture in terms of global criterion. The
 104 musculoskeletal modelling was developed using the open-source software OpenSim [12,13], where a
 105 musculoskeletal model consists of rigid body segments connected by joints and articulated by
 106 actuators, which span these joints and generate forces and motion. It was used a generic model
 107 named Gait2392, available in the software. This is a 23 degree of freedom computer model of the
 108 human musculoskeletal system in three-dimensions. It features 92 muscle-tendon actuators to
 109 represent 76 muscles in the lower extremities and torso. This model represents an average adult
 110 subject, which is not ideal in modeling children. However, as there are no generic models for
 111 children, this one has been widely used in similar studies [4,7,8,14,15]. The size and inertial
 112 properties of all segments were adjusted to represent each subject as well as possible. Logically, all
 113 the insertion points of the actuators are also adjusted, as well as joint frame locations. It was done
 114 using the scale tool provided by OpenSim. This tool also allows scaling the mass of each segment,
 115 which ensures that mass distribution is preserved. The peak isometric force of each muscle was
 116 estimated through the Correa and Pandy's scaling approach [16].

117 Joint moments (Supplementary Fig. 2) were compute using inverse dynamics. The information
 118 collected in vivo usually carries dynamic inconsistencies between experimental kinematics and
 119 ground reaction forces, normally related to inaccuracies in mass distribution and experimental errors.
 120 As the model follows physical laws to simulate the intended movement, it creates non-physical
 121 compensatory forces that account for these inconsistencies, called residuals. The residual reduction
 122 algorithm (RRA) was used to minimize these effects of modelling and marker data processing errors.
 123 It is a form of forward dynamics simulation that uses tracking controllers to follow the model
 124 kinematics. The analysis begins by setting the values of the model's generalized coordinates to the

125 values computed by the inverse dynamics tool for the defined initial time. Then, RRA steps forward
126 in time (with each time step of 0.001 s) until the end of the task length. During this process, force
127 values are computed for all the model's actuators at each time step, while the algorithm tries to both
128 reduce the residuals and adjust accelerations according to the original values. The modified
129 musculoskeletal model is used to compute a set of muscle excitations that will drive the dynamic
130 musculoskeletal model to track a set of desired kinematics in the presence of applied external forces,
131 in this case, ground reaction forces. The computed muscle control (CMC) does this by using, not
132 only a static optimization step but also a proportional-derivative control to create a forward dynamic
133 simulation that closely tracks the kinematics from the RRA [12]. The algorithm computes the muscle
134 forces and activations, while accounts for activation and contraction dynamics, which includes the
135 interaction of the force-length-velocity properties of the muscle and the elastic properties of the
136 tendon [17]. Apart from the residuals, reserve actuators are appended to the model to compensate for
137 any possible muscle deficiency during the simulation, for every joint degree of freedom. Finally, the
138 induced acceleration analysis (IAA) was used to compute accelerations induced by individual muscle
139 forces acting on the model. The results represent the contributions of individual muscles for each
140 portion of the movement, especially regarding propulsion and weight-bearing stages. This analysis
141 includes a constraint on both toes that are in contact with the ground, which kinematic behavior is
142 known as pure rolling [18].

143

144 **2.4 Statistical analysis**

145 Two different statistical tests were applied to test statistically significant differences between the
146 groups. Both are non-parametric tests due to the small number of samples considered and,
147 consequently, to the impossibility of testing the normality of each distribution. Since the typically
148 developing children were performing two different gait patterns, there were different group results
149 for the same subjects, which must be considered as paired samples. When comparing the results of
150 the CP children with any results of the healthy children, they are considered independent samples, so
151 the mean results from each group had to be compared two by two. The Mann-Whitney test was used
152 to compare the group means of children with cerebral palsy performing crouch gait with healthy
153 children, both simulating the pathological gait and performing unimpaired gait. To differentiate the
154 group means obtained from TD children's results, walking in these different gait patterns, it was used
155 the Wilcoxon Signed-Rank Test, as they consist of paired samples. Both statistical tests were
156 performed using the IBM SPSS Statistics software, and the conclusions were taken based on the p-
157 values obtained, considering a 95% confidence interval.

158

159 **3 Results**

160 The quadriceps and the ankle plantarflexors, in both real and simulated crouch, displayed a sustained
161 force pattern overtime, while in normal gait these muscles presented well-defined peaks of strength
162 related to the stance in which they are expected to be most needed (Fig.1). The crouch gait subjects
163 showed similar muscle contributions, throughout the stance phase, for the gastrocnemius and soleus,
164 with an identified increase during terminal stance and pre-swing.

165

Insert Figure 1 here

166

Insert Figure 2 here

167 Regarding the healthy children simulating crouch gait and performing unimpaired gait, the forces
168 produced by soleus, vasti, rectus femoris, and gluteus maximus were far superior in the simulated
169 crouch (Fig.2). On the other hand, the gastrocnemius, iliopsoas, and ankle dorsiflexors showed higher
170 force values during stance in normal gait. When comparing the average muscle forces results of the
171 simulated crouch with the real crouch gait, only four of the muscle groups reported statistically
172 significant differences. The gluteus maximus and the hip abductors required much more muscle
173 strength during simulated crouch, while iliopsoas and ankle dorsiflexors showed slightly higher
174 demand during real crouch. Finally, by analyzing the normal gait and crouch gait, the results indicate
175 that the only significant differences in the muscle forces between these groups were found in the
176 gastrocnemius, ankle dorsiflexors, and hip abductors. The unimpaired gait required greater muscle
177 forces from the gastrocnemius and hip abductor, but less strength from the ankle dorsiflexors.

178 The ankle dorsiflexors are the major responsible for the downward acceleration and in slowing the
179 forward progression, in real and simulated crouch (Fig.3). Their contribution is mostly significant
180 during early and mid-stance. In unimpaired gait, this muscle group produced relevant upwards
181 acceleration of the mass center during these gait phases. The hip abductors barely contributed to
182 vertical accelerations in simulated and real crouch gaits during stance, but they generated significant
183 upward acceleration during single support stance in normal gait.

184 In both unimpaired gait and simulated crouch, the soleus and the gastrocnemius appear to be the
185 muscle groups that contribute the most to the upward acceleration of the mass center (Fig.4). On the
186 other hand, in crouch gait, the major contributors to support are the vasti and the soleus, although the
187 gastrocnemius still have a significant contribution. The upward acceleration produced by soleus was
188 greater during simulated crouch than normal gait and real crouch, while the contribution of the
189 gastrocnemius, was greater during unimpaired gait than simulated and real crouch. The positive
190 contributions of the vasti and rectus femoris to vertical acceleration was greater in simulated crouch
191 than normal gait.

192 Insert Figure 3 here

193 Insert Figure 4 here

194 Regarding fore-aft accelerations, the results were more similar between the research groups. The
195 hamstrings and gastrocnemius produced significant contributions to forward acceleration of the mass
196 center, while the quadriceps contributed to the opposite direction, in all the gait patterns performed.
197 The vasti produced greater backward acceleration during real crouch gait than unimpaired gait. The
198 forward acceleration produced by the soleus was far greater in real crouch, compared to normal gait
199 and simulated crouch. Finally, the ankle dorsiflexors barely contributed to the acceleration of the
200 mass center considering the fore-aft direction, in normal gait and simulated crouch, but in real
201 crouch, they presented a significant contribution to backward acceleration.

202 Insert Figure 5 here

203

204 4 Discussion

205 The gastrocnemius produced greater muscle forces during unimpaired gait compared with both
206 simulated and real crouch. It was previously suggested that weakness of the gastrocnemius and the
207 hip abductors could contribute to crouch gait [5]. Furthermore, by comparing the TD children

208 simulating crouch with the CP children, the results indicate that the diminished capacity to generate
209 force from the gastrocnemius may be more related to the posture adopted in crouch gait than muscle
210 weakness. In turn, the hip abductors strength required was significantly less during stance in
211 simulated crouch and unimpaired gait than real crouch. So, it is possible that this apparently
212 diminished capacity to produce force is a contributive factor to adopt a crouch posture.

213 Considering the stance phase in normal walking, the quadriceps, which include the rectus femoris
214 and the vasti muscles, are the major responsible for knee extension and, logically, for the deceleration
215 of knee flexion [19]. The muscle forces from this muscle group are expected mainly during mid-
216 stance [20], which is what is observed in the results from the TD children performing unimpaired
217 gait. On the other hand, in simulated and real crouch gait, the quadriceps have a much more
218 continuous action throughout the stance phase, as was expected based on Steele's work [6]. The
219 results indicate that the forces produced by vasti and rectus femoris were significantly greater in
220 simulated crouch than in unimpaired gait. This was also expected by comparing real crouch gait with
221 normal gait [7,21,22]. Even though the force values were higher in real crouch gait, this difference
222 could not be considered statistically significant due to the high variance of this parameter among the
223 CP children. The higher demand on the quadriceps during simulated crouch and the same expected
224 behavior in real crouch, suggests that the overload on these muscles is necessary to support the
225 crouch posture.

226 Simulated crouch required a greater demand on the gluteus maximus than unimpaired gait and real
227 crouch gait, which indicates that this muscle may be relevant in the function of counteracting the
228 abnormal posture. The TD children performing this abnormal gait showed a higher capacity in
229 extending the hip compared with the CP children, so it was expected a higher demand on this muscle
230 when comparing these two groups. Muscles are responsible to oppose the effect of gravity in the
231 skeletal, enabling the vertical and forward propulsion of the body, so analysing individual muscle
232 contributions to the mass centre accelerations affords further insight into how support and
233 progression works during gait. Before the foot-flat moment, it is expected that the ankle dorsiflexors
234 are one of the main contributors to support, promoting the upwards mass centre acceleration, in
235 unimpaired gait [20,23,24]. Their function during this stage is to resist the fall of the forefoot because
236 of the weight acceptance. The results of this study are consistent with the assumptions for the normal
237 gait regarding this muscle group, whereas in simulated and real crouch gait this contribution to the
238 upwards mass centre acceleration is not verified, having instead a negative effect in supporting the
239 body. Due to this lack of support during this early stage of the stance, the vasti and soleus appear to
240 be activated earlier to compensate for the downward acceleration generated. This is observed in
241 simulated and real crouch gaits, which suggests that these two muscles are crucial in supporting the
242 body throughout this gait phase.

243 The quadriceps and the ankle plantarflexors are the major responsible for the upwards acceleration of
244 the mass centre in all the gaits performed. The results suggest that in simulated crouch, the child
245 relies more on the soleus' contribution to upwards acceleration than in real crouch, which indicates
246 that this muscle may be important in supporting the crouch posture. On the other hand, the CP
247 children seemed to rely more on the upwards acceleration produced by the vasti, than the TD children
248 simulating crouch gait. The results are not clear concerning this last assumption because, although
249 the vasti produced greater upwards accelerations during real crouch than simulated crouch, this
250 difference was not proven to be statistically significant due to the high variance of this parameter
251 among the CP children.

252 The major responsible to modulate the fore-aft accelerations during simulated and real crouch gait
253 are the quadriceps and ankle plantarflexors, accelerating the mass center backward and forward,
254 respectively. This is consistent with that observed in CP children with crouch gait in a previous study
255 [7]. The ankle dorsiflexors produced significantly greater backward acceleration of the mass center in
256 real crouch than simulated crouch and unimpaired gait, which seems to be compensated by the
257 forward acceleration produced by the soleus. These results suggest that weakening or reducing force-
258 generating capacity of the soleus in CP children may disable them to walk or reduce their capacity to
259 progress during gait.

260

261 **5 Conflict of Interest**

262 The authors declare that the research was conducted in the absence of any commercial or financial
263 relationships that could be construed as a potential conflict of interest.

264

265 **6 Author Contributions**

266 C.C., F.J. and RM contributed with the writing of the original draft, data collection and data
267 processing. F.J. and A.V. contributed with the conceptualization and formal analysis of the data. A.V.
268 contributed with supervision of the work, with funding acquisition and project administration.

269

270 **7 Funding**

271 Project supported by Fundação para a Ciência e a Tecnologia (FCT), grant number PTDC/EMD-
272 EMD/5804/2020 and grant number UIDB/00447/2020, attributed to CIPER–Centro Interdisciplinar
273 para o Estudo da Performance Humana (unit 447; DOI: 10.54499/UIDB/00447/2020).

274

275 **8 References**

276 [1] H. K. Graham et al., “Cerebral palsy,” Jan. 07, 2016, Nature Publishing Group. doi:
277 10.1038/nrdp.2015.82.

278 [2] P. Rosenbaum, N. Paneth, A. Leviton, M. Goldstein, and M. Bax, “A report: The definition
279 and classification of cerebral palsy April 2006,” 2007, Blackwell Publishing Ltd. doi:
280 10.1111/j.1469-8749.2007.tb12610.x.

281 [3] S. Gulati and V. Sondhi, “Cerebral Palsy: An Overview,” Indian J Pediatr, vol. 85, no. 11, pp.
282 1006–1016, Nov. 2018, doi: 10.1007/s12098-017-2475-1.

283 [4] R. Dana TUGUI, D. Antonescu, and D. Raluca Tugui, “Cerebral Palsy Gait, Clinical
284 Importance,” Maedica (Bucur), vol. 8, no. 4, p. 388, Sep. 2013, Accessed: Apr. 07, 2025. [Online].
285 Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC3968479/>

286 [5] M. Sandau, H. Koblach, T. B. Moeslund, H. Aanæs, T. Alkjær, and E. B. Simonsen,
287 “Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane,”
288 *Med Eng Phys*, vol. 36, no. 9, pp. 1168–1175, Sep. 2014, doi:
289 10.1016/J.MEDENGPHY.2014.07.007.

290 [6] T. A. L. Wren, C. A. Tucker, S. A. Rethlefsen, G. E. Gorton, and S. Ōunpuu, “Clinical
291 efficacy of instrumented gait analysis: Systematic review 2020 update,” *Gait Posture*, vol. 80, pp.
292 274–279, Jul. 2020, doi: 10.1016/j.gaitpost.2020.05.031.

293 [7] S. Armand, G. Decoulon, and A. Bonnefoy-Mazure, “Gait analysis in children with cerebral
294 palsy,” *EFORT Open Rev*, vol. 1, no. 12, pp. 448–460, Dec. 2016, doi: 10.1302/2058-
295 5241.1.000052.

296 [8] S. R. Simon, “Quantification of human motion: Gait analysis - Benefits and limitations to its
297 application to clinical problems,” *J Biomech*, vol. 37, no. 12, pp. 1869–1880, Dec. 2004, doi:
298 10.1016/j.jbiomech.2004.02.047.

299 [9] R. M. Kanko et al., “Assessment of spatiotemporal gait parameters using a deep learning
300 algorithm-based markerless motion capture system,” *J Biomech*, vol. 122, Jun. 2021, doi:
301 10.1016/j.jbiomech.2021.110414.

302 [10] R. Hara, M. Sangeux, R. Baker, and J. McGinley, “Quantification of pelvic soft tissue artifact
303 in multiple static positions,” *Gait Posture*, vol. 39, no. 2, pp. 712–717, Feb. 2014, doi:
304 10.1016/J.GAITPOST.2013.10.001.

305 [11] M. Akbarshahi, A. G. Schache, J. W. Fernandez, R. Baker, S. Banks, and M. G. Pandy, “Non-
306 invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional
307 activity,” *J Biomech*, vol. 43, no. 7, pp. 1292–1301, May 2010, doi:
308 10.1016/J.JBIOMECH.2010.01.002.

309 [12] A. Cappozzo, “Gait analysis methodology,” *Hum Mov Sci*, vol. 3, no. 1–2, pp. 27–50, Mar.
310 1984, doi: 10.1016/0167-9457(84)90004-6.

311 [13] A. Peters, B. Galna, M. Sangeux, M. Morris, and R. Baker, “Quantification of soft tissue
312 artifact in lower limb human motion analysis: A systematic review,” *Gait Posture*, vol. 31, no. 1, pp.
313 1–8, Jan. 2010, doi: 10.1016/J.GAITPOST.2009.09.004.

314 [14] D. L. Benoit, D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström, “Effect
315 of skin movement artifact on knee kinematics during gait and cutting motions measured *in vivo*,”
316 *Gait Posture*, vol. 24, no. 2, pp. 152–164, Oct. 2006, doi: 10.1016/J.GAITPOST.2005.04.012.

317 [15] A. Peters, B. Galna, M. Sangeux, M. Morris, and R. Baker, “Quantification of soft tissue
318 artifact in lower limb human motion analysis: a systematic review,” *Gait Posture*, vol. 31, no. 1, pp.
319 1–8, Jan. 2010, doi: 10.1016/J.GAITPOST.2009.09.004.

320 [16] F. D’Isidoro, C. Brockmann, and S. J. Ferguson, “Effects of the soft tissue artefact on the hip
321 joint kinematics during unrestricted activities of daily living,” *J Biomech*, vol. 104, May 2020, doi:
322 10.1016/J.JBIOMECH.2020.109717.

323 [17] T. Y. Tsai, T. W. Lu, M. Y. Kuo, and C. C. Lin, “Effects of soft tissue artifacts on the
324 calculated kinematics and kinetics of the knee during stair-ascent,” *J Biomech*, vol. 44, no. 6, pp.
325 1182–1188, Apr. 2011, doi: 10.1016/J.JBIOMECH.2011.01.009.

326 [18] A. Leardini, A. Chiari, U. Della Croce, and A. Cappozzo, “Human movement analysis using
327 stereophotogrammetry Part 3. Soft tissue artifact assessment and compensation,” *Gait Posture*, vol.
328 21, no. 2, pp. 212–225, 2005, doi: 10.1016/J.GAITPOST.2004.05.002.

329 [19] M. Moro, G. Marchesi, F. Hesse, F. Odone, and M. Casadio, “Markerless vs. Marker-Based
330 Gait Analysis: A Proof of Concept Study,” *Sensors*, vol. 22, no. 5, Mar. 2022, doi:
331 10.3390/s22052011.

332 [20] Corazza S, Mündermann L, and Andriacchi T, “Markerless Motion Capture Methods for the
333 Estimation of Human Body Kinematics,” Stanford, 2006. Accessed: May 06, 2024. [Online].
334 Available:
335 <https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5e2080eca90de9fdb969088a40b49c4524d5b230>

337 [21] N. Ito et al., “Markerless motion capture: What clinician-scientists need to know right now,”
338 *JSAMS Plus*, vol. 1, p. 100001, Oct. 2022, doi: 10.1016/J.JSAMPL.2022.100001.

339 [22] R. M. Kanko, E. K. Laende, E. M. Davis, W. S. Selbie, and K. J. Deluzio, “Concurrent
340 assessment of gait kinematics using marker-based and markerless motion capture,” *J Biomech*, vol.
341 127, Oct. 2021, doi: 10.1016/j.jbiomech.2021.110665.

342 [23] R. M. Kanko, E. Laende, W. S. Selbie, and K. J. Deluzio, “Inter-session repeatability of
343 markerless motion capture gait kinematics,” *J Biomech*, vol. 121, May 2021, doi:
344 10.1016/j.jbiomech.2021.110422.

345 [24] T. A. L. Wren, P. Isakov, and S. A. Rethlefsen, “Comparison of kinematics between Theia
346 markerless and conventional marker-based gait analysis in clinical patients,” *Gait Posture*, vol. 104,
347 pp. 9–14, Jul. 2023, doi: 10.1016/j.gaitpost.2023.05.029.

348 [25] A. Cappozzo, F. Catani, U. Della Croce, and A. Leardini, “Position and orientation in space
349 of bones during movement: anatomical frame definition and determination,” *Clinical Biomechanics*,
350 vol. 10, no. 4, pp. 171–178, 1995, doi: 10.1016/0268-0033(95)91394-T.

351 [26] R. Baker, “Pelvic angles: a mathematically rigorous definition which is consistent with a
352 conventional clinical understanding of the terms,” *Gait Posture*, vol. 13, no. 1, pp. 1–6, 2001, doi:
353 10.1016/S0966-6362(00)00083-7

354 [27] K. Song, T. J. Hullfish, R. Scattone Silva, K. G. Silbernagel, and J. R. Baxter, “Markerless
355 motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based
356 across 8 movements,” *J Biomech*, vol. 157, Aug. 2023, doi: 10.1016/j.jbiomech.2023.111751.

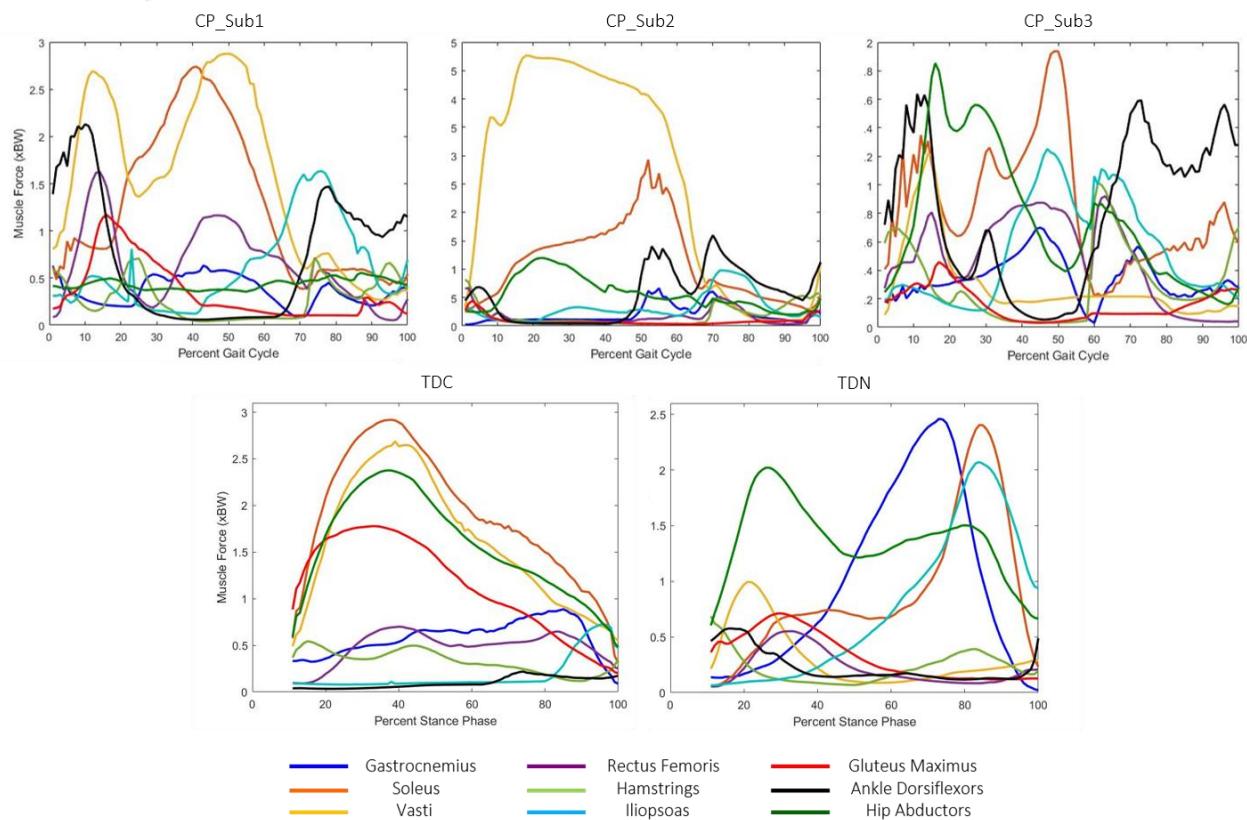
357 [28] R. Riemer, E. T. Hsiao-Wecksler, and X. Zhang, “Uncertainties in inverse dynamics
358 solutions: A comprehensive analysis and an application to gait,” *Gait Posture*, vol. 27, no. 4, pp. 578–
359 588, May 2008, doi: 10.1016/J.GAITPOST.2007.07.012.

360 [29] H. Tang, J. Pan, B. Munkasy, K. Duffy, and L. Li, "Comparison of Lower Extremity Joint
 361 Moment and Power Estimated by Markerless and Marker-Based Systems during Treadmill
 362 Running," *Bioengineering*, vol. 9, no. 10, Oct. 2022, doi: 10.3390/bioengineering9100574.

363

364

365 **Tables and Figures**

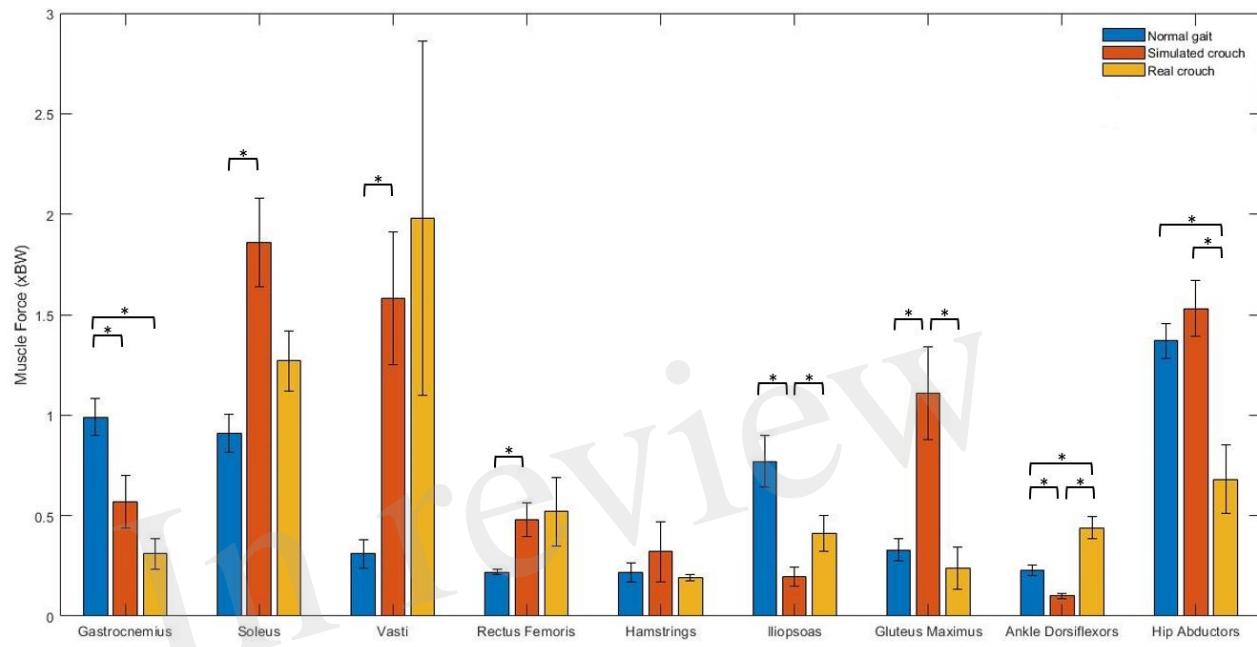

366

367 Table 1. Characteristics of the typical developed (TD) and cerebral palsy (CP) children

	N	Age (yrs) Mean \pmsd	Height (cm) Mean \pmsd	Mass (kg) Mean \pmsd
TD children	6	8 \pm 1	127 \pm 5	25 \pm 3
CP children	3	12 \pm 3	139 \pm 18	35 \pm 9

368

369

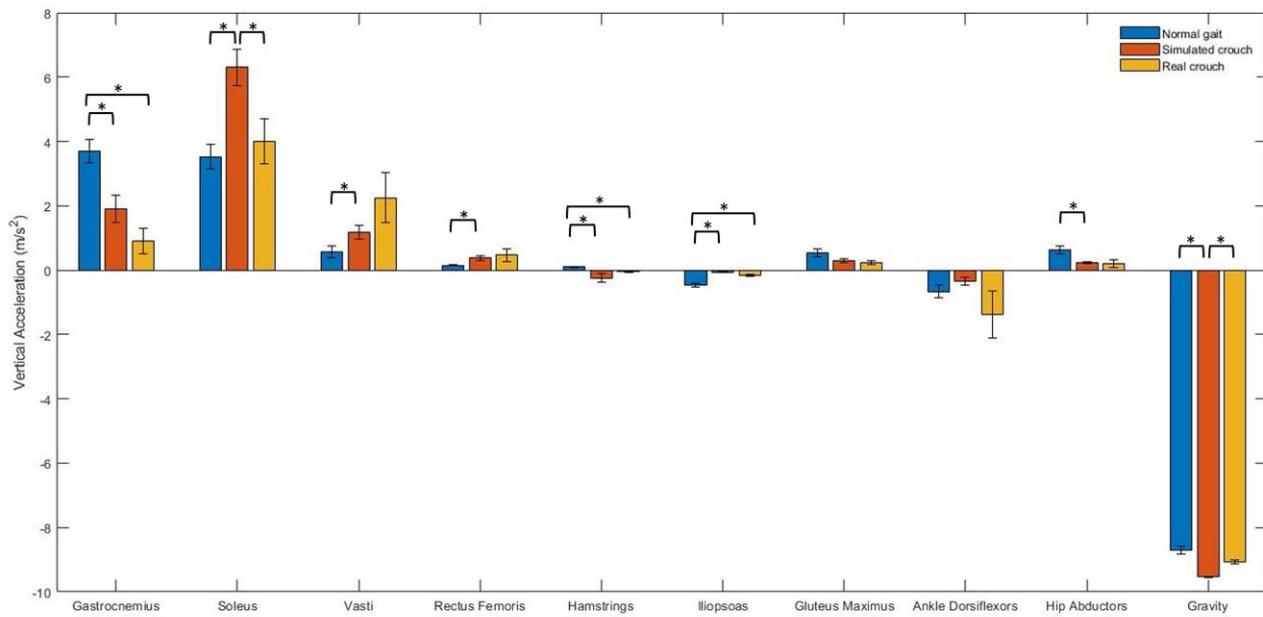
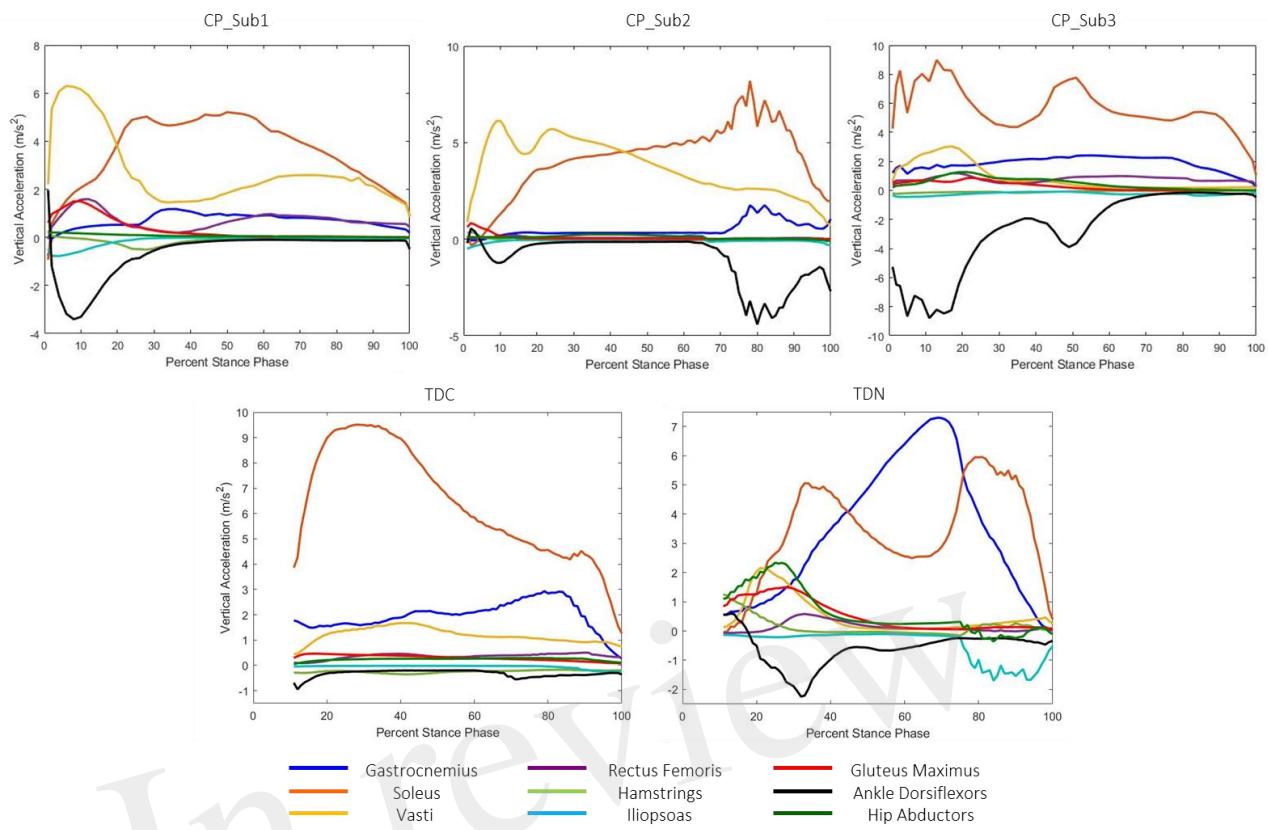


370

371 Fig. 1. Average muscle forces normalized by bodyweight (BW) obtained from CMC, during one gait
372 cycle for all the research groups.

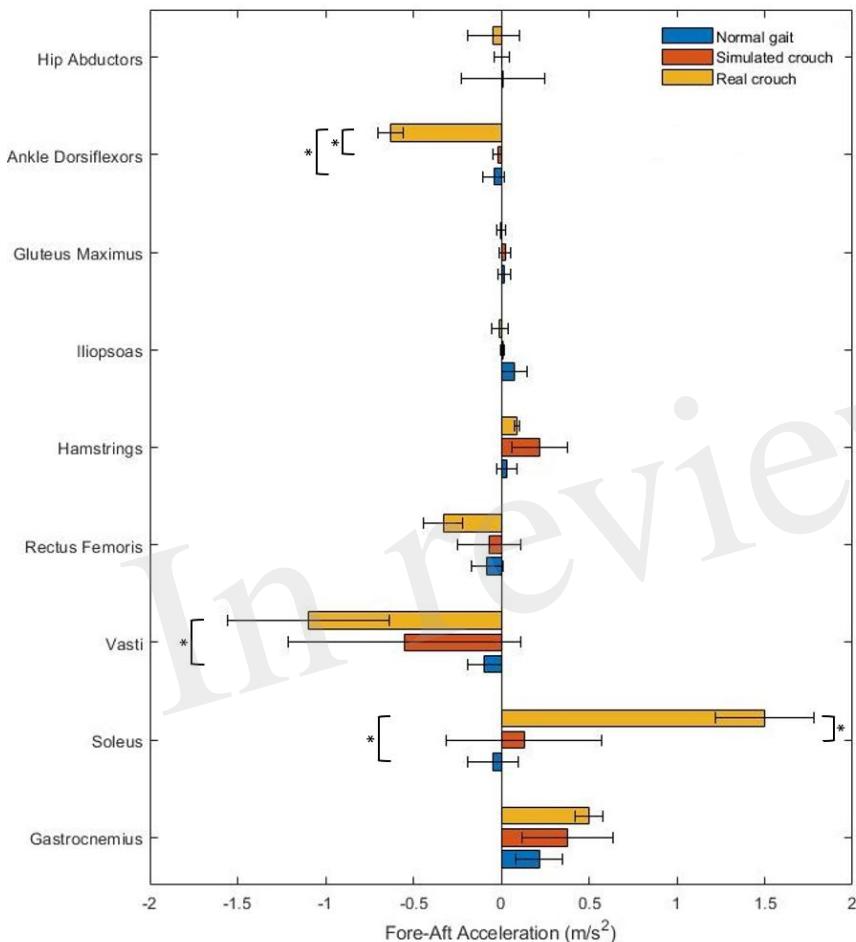
373

374

375

376 Fig. 2. Average muscle force during single support in stance phase normalized by bodyweight (BW).
377 Error bars are ± 1 standard error.


378

379

385 Fig. 4. The average vertical accelerations of the mass center during single support in stance phase
386 produced by each muscle. Gravity indicates the acceleration of the mass center when only gravity is
387 applied. Error bars are ± 1 standard error.

388

389

390 Fig. 5. The average fore-aft accelerations of the mass center during stance produced by each muscle.
391 Error bars are ± 1 standard error.

392

393

Figure 1.JPG

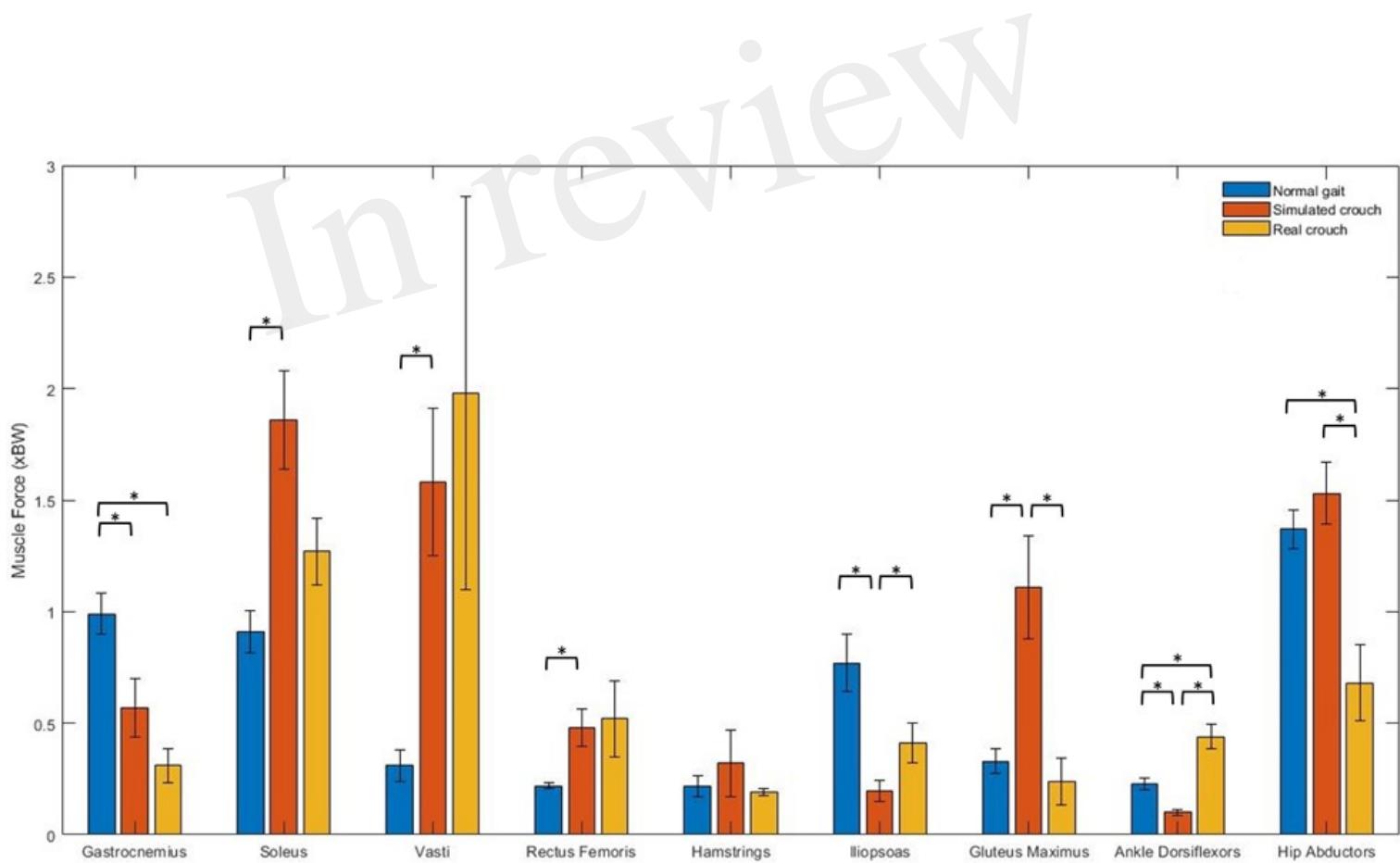


Figure 2.JPG

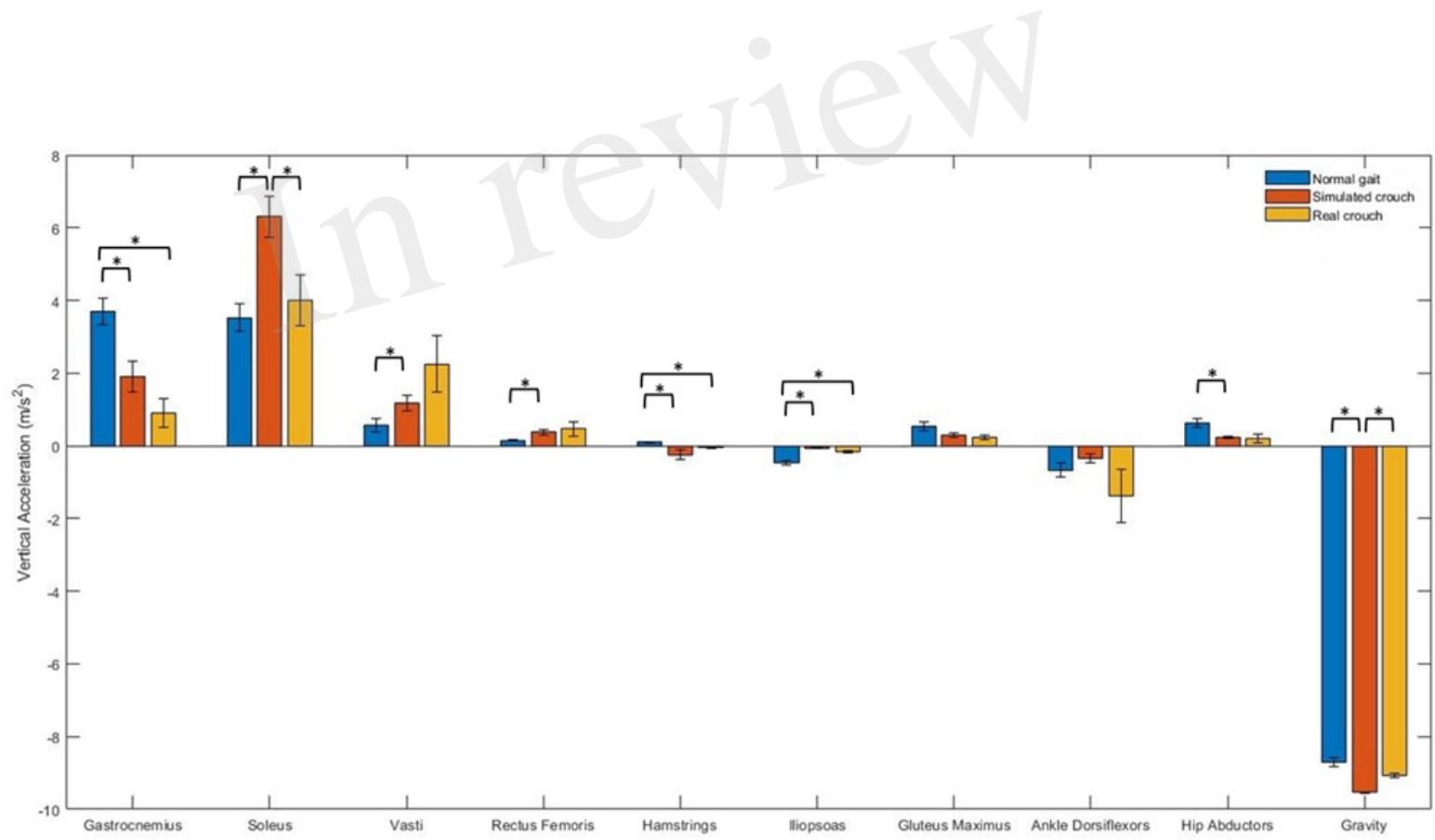


Figure 3.JPG

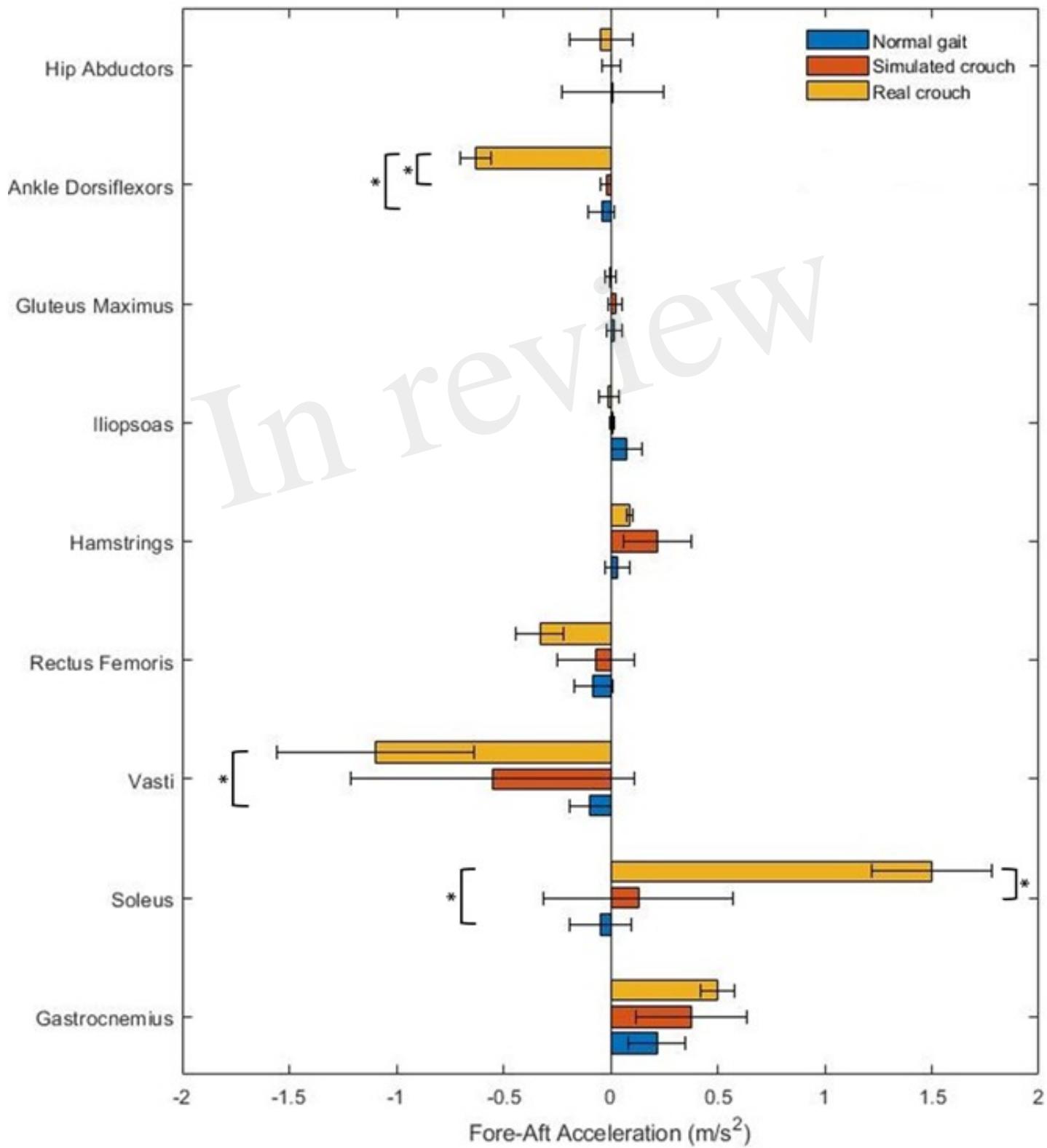


Figure 4.JPG

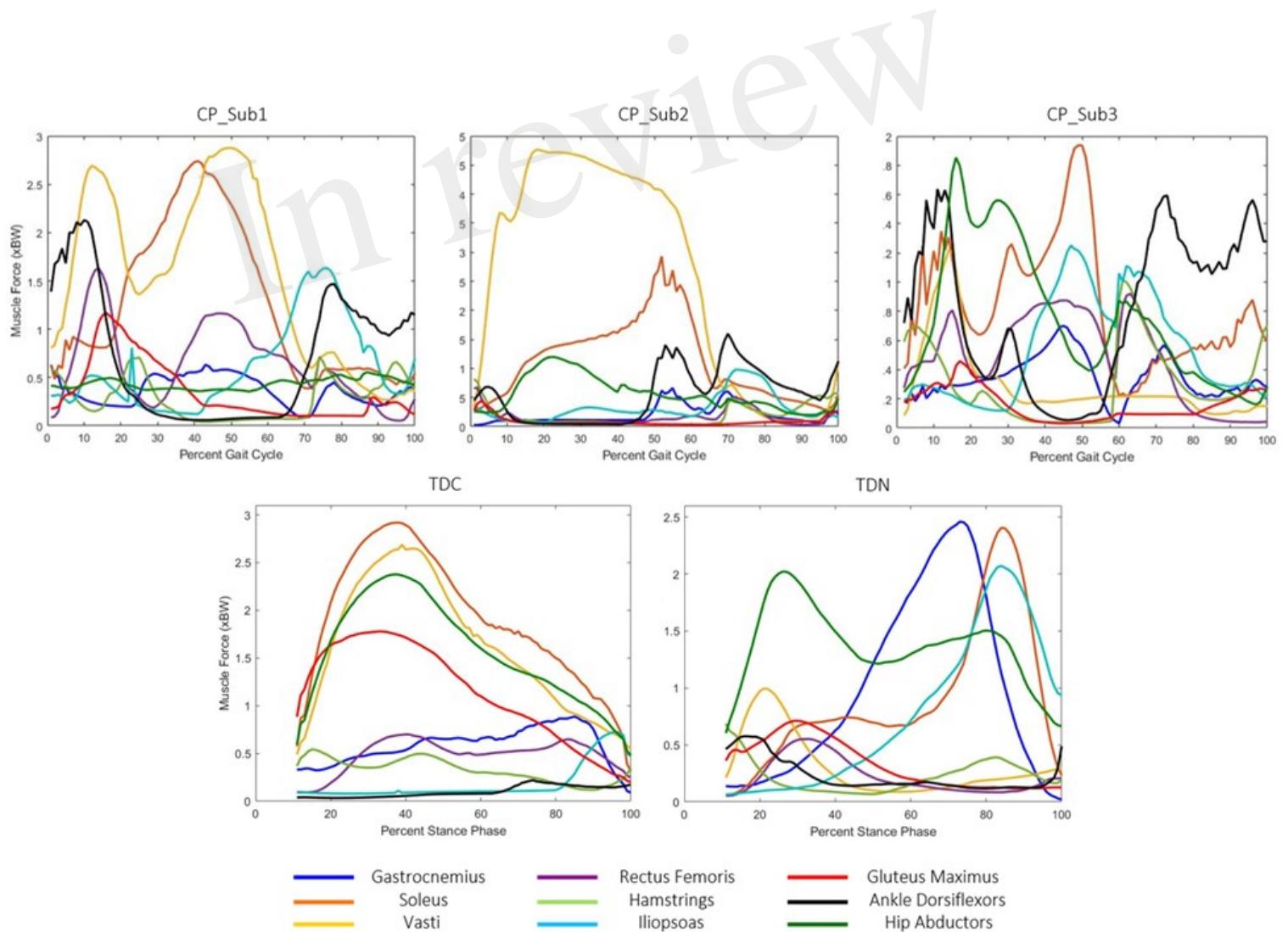
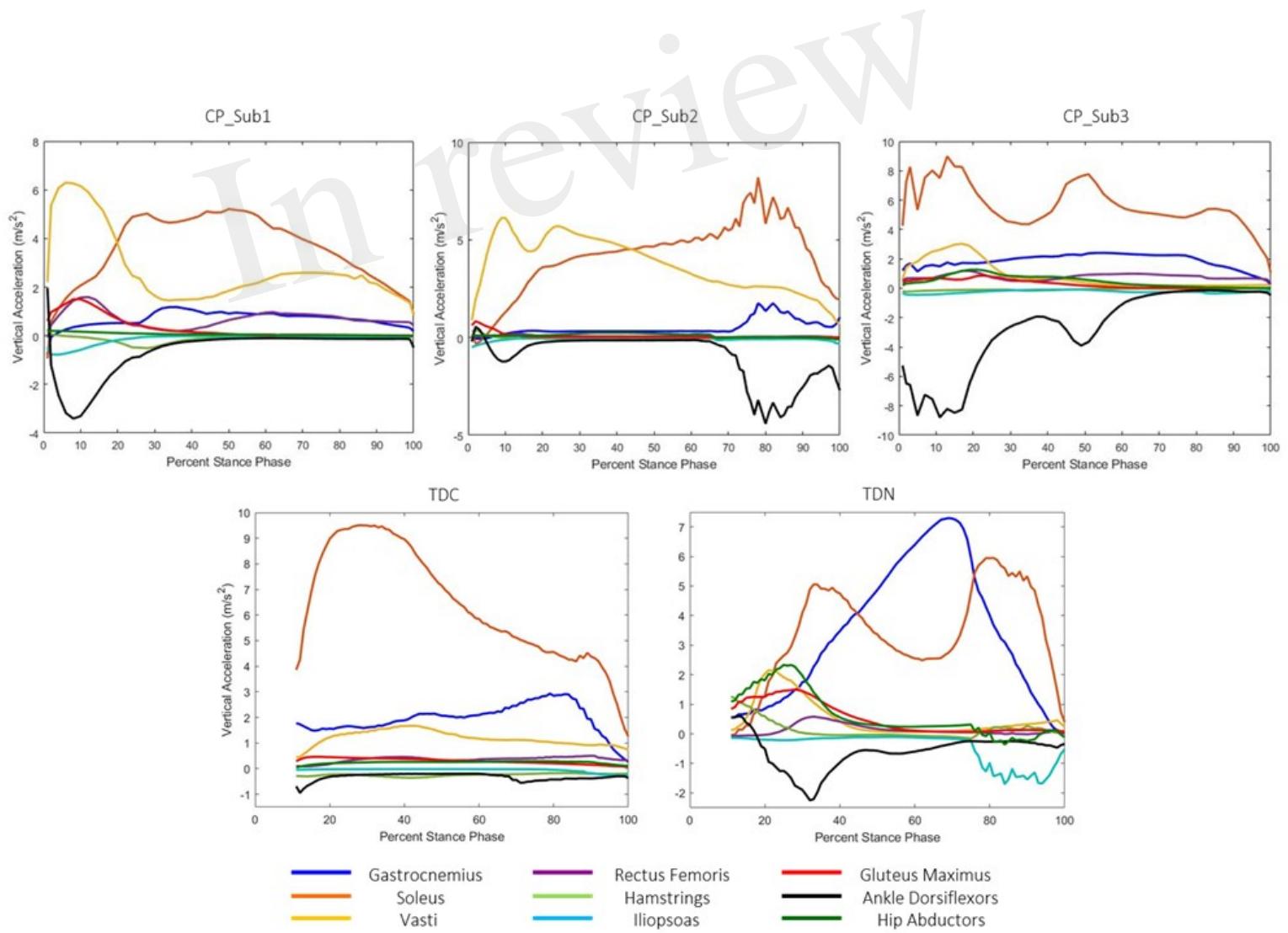



Figure 5.JPG

